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Estimating and Presenting 
Uncertainties in Empirical Data and 

Modeling Results

Dwayne R.J. Moore
Cantox Environmental, Inc.

Overview

• Sources of uncertainty
• Methods for describing and presenting 

uncertainty 
• Wildlife case study
• Recommendations for estimating and 

presenting uncertainty
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Introduction to Uncertainty 
Analysis

• Majority of ERAs deterministic and conservative 
(i.e., screening level)

• However ...
– degree of conservatism is opaque, undefined and 

uncontrolled
– difficult to characterize risk, except in extreme situations

• 95th %ile x 95th %ile x 95th %ile ≠ 95th %ile
• EPA guidance now available

– Guiding Principles for Monte Carlo Analysis
– Superfund, ECOFRAM, Office of Pesticides

Types of Uncertainty

• Variability

• Incertitude

• Model uncertainty
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Variability

• Arises from natural stochasticity
• Parameter variability due to

– spatial distribution of chemical concentration 
– temporal fluctuations in rainfall
– genetic differences among individuals 

• Not reducible by empirical effort, but can be 
better understood

Incertitude

• Arises from incomplete knowledge
• Parameter uncertainty due to 

– limited sample size
– possible biases in sampling design
– use of surrogate data

• Reducible with empirical effort
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Methods for Describing
Model Uncertainty

• Simple statistics
• Interval analysis
• Monte Carlo
• Bayesian methods
• Second-order Monte Carlo
• Probability bounds analysis
• Many others

Interval Analysis
How?

– circumscribe estimates with bounds, a = [a1, a2], where a1 ≤ a2

– addition: [a1, a2] + [b1, b2] = [a1+b1, a2+b2]
– subtraction: [a1, a2] – [b1, b2] = [a1–b2, a2–b1]
– multiplication: [a1, a2] × [b1, b2] = [a1b1, a2b2], 0 ≤ a,b
– division: [a1, a2] ÷ [b1, b2] = [a1/b2, a2/b1], 0 ≤ a,b

Why?
– natural for scientists and easy to explain to others
– works no matter where uncertainty comes from

Why not?
– paradoxical: can’t give exact value but can give exact bounds
– ranges can grow quickly, giving wide results
– repeated variables cumbersome to handle optimally
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Monte Carlo Simulation
How?

– replace each point estimate with a probability distribution
– repeatedly sample from each, tally answers in a histogram

Why?
– simple to implement
– fairly simple to explain
– summarizes entire distribution of risk

Why not?
– requires a great deal of empirical information
– usually need to guess some things
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Second-order Monte Carlo
How?

– let parameters of input distributions be distributions as well
– nest Monte Carlo analyses

Why?
– partitions variability and incertitude
– plots get narrower with better empirical information

Why not?
– difficult to include some sources of uncertainty
– results are cumbersome to interpret and explain
– often difficult to separate incertitude and variability
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Probability Bounds
How?

– specify what you are sure about
– establish bounds on probability distributions
– select dependencies (no assumption, independence, perfect, etc.)

Why?
– partitions variability and incertitude
– puts bounds on Monte Carlo results
– bounds get narrower with better empirical information
– outputs easy to understand

Why not?
– cannot handle second-order probabilities
– may not be able to use subtle information to tighten bounds
– optimum bounds difficult to compute when variables repeated
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Advantages of 2-D Techniques

• With 1-D Monte Carlo, difficult to express 
confidence in the predictions

• Two output distributions may appear similar, but 
one may have low incertitude while the other has 
high incertitude

• Additional research effort only beneficial for high 
incertitude situations

• 2-D Monte Carlo and probability bounds analysis 
can be used to address this issue

Presenting Modeled Risks

• If risk curve 
available:
– probability of 10% or 

greater effect is less 
than 20% = LOW 
RISK

– probability of 20% or 
greater effect is greater 
than 50% = HIGH 
RISK

– all other outcomes = 
INTERMEDIATE 
RISK
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Presenting Modeled Risks, 
continued

• If risk curve not 
available:
– probability of exceeding 

lower toxicity threshold 
is less than 20% = LOW 
RISK

– probability of exceeding 
the upper toxicity 
threshold is greater than 
20% = HIGH RISK

– all other outcomes = 
INTERMEDIATE RISK
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Case Study: Mink Exposed to
tPCBs in Housatonic River Area
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Exposure Modeling

• Used standard total daily intake (TDI, mg/kg bw/d) model

• where,
– FMR = free metabolic rate (kcal/kg/d)
– Ci = concentration in prey item (mg/kg ww)
– Pi = proportion of prey item in the diet
– AEi = assimilation efficiency for mink consuming prey item
– GEi = gross energy of prey item (kcal/kg)
– Pt = proportion of time in contaminated area

• Probabilistic modeling conducted using both Monte Carlo 
and probability bounds analysis
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Incorporating Uncertainty in 
Empirical Data

• Uncertainty due to limited sample size
– calculate confidence limits on measures of centrality 

and dispersion
– for lognormal data (e.g., concentration), EPA 

recommends Land H-statistic
– for normal data, use Student’s t
– use Chebyshev, bootstrap resampling or jackknife when 

sample size is small
• In mink ERA, UCL from Land H-statistic used 

to represent prey concentration in Monte 
Carlo analyses

• LCL and UCL used in p-bounds analyses
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Prey Concentration

Chemical: tPCBs Sample Size (n) 27
Medium: Whole Body Fish Arithmetic Mean 3.812209 of LN Concentration
Location: Reach 5 Standard Deviation (sy) 0.435637 of LN Concentration
Units: mg/kg Land H 0.95 1.902969

Land H 0.05 -1.63421
Concentration LN Concentration UCL0.95 on the Mean 58.53824

44.91539 3.804780498 UCL0.05 on the Mean 43.27087
51.8434 3.948227636
61.90942 4.125672349 Interpolation Calculations
32.76553 3.489377048 Lower sy 0.4 Closest value below ac
54.73981 4.002591233 Upper sy 0.5 Closest value above a
44.633739 3.798490053 Actual sy 0.435637
57.42488 4.050477659
70.090022 4.249780444 Lower n Upper n
54.879926 4.005147635 Sample Size 21 31 Closest val
106.315842 4.666414305 H 0.95 for Lower sy 1.905 1.856 Lookup val
42.008099 3.737862433 H 0.95 for Upper sy 1.989 1.928 Lookup val
40.102283 3.691433265 H 0.95 1.934935 1.881659

Other Sources of Empirical 
Uncertainty

• Uncertainty arising from non-detects
– Conducted bounding analysis for each prey 

concentration variable
– If ratio of maximum possible mean (ND=DL) to 

minimum possible mean (ND=0) <1.3, point estimate 
assuming ND=0.5 DL used

– Otherwise, uniform distribution (min to max) and 
distribution-free range used in Monte Carlo and p-
bounds analyses, respectively

• Analogous approach may be used to deal 
with analytical uncertainty



12

Mink Exposure to Total PCBs

Upstream Reference Area
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Effects Assessment

Hierarchy for Choosing
Effects Metrics

1. Dose-response relationship 
from single study

2. Dose-response relationship 
from combined similar 
studies

3. NOAEL and LOAEL
4. Field-based threshold range
5. Threshold range spanning 

sensitive and tolerant 
species
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Risk Curves – Mink Exposed to 
Total PCBs
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Other Lines of Evidence
• Field surveys indicated reduced 

abundance and few, if any, 
residents in contaminated areas

• Feeding study with 
contaminated fish indicated:
– 20% reduction in survival of kits from 

0 to 6 weeks with approx. 1% 
contaminated fish in diet

– Increased incidence of jaw lesions as 
% contaminated fish in the diet 
increased

• In this scenario, other lines of 
evidence reduced uncertainty 
about modeled risk estimates
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Recommendations

• Use simple techniques (e.g., interval analysis) to 
identify risk scenarios

• Conduct sensitivity analyses to identify critical 
variables – guides data collection

• Use Monte Carlo analysis in higher tier assessments 
– but combine with a 2D method to determine degree 
of incertitude

• Collect other lines of evidence, conduct weight-of-
evidence evaluation

• List sources of uncertainty not included in analyses –
discuss possible influence on risk estimates

• Engage risk manager, trustees, industry, public, etc 
throughout process

Importance to Decision Making
- Small Piscivorous Mammals Exposed to tPCBs in Bayou D’Inde -
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• Ideally want to push risk down to green dot
• At a minimum, push risk down to red dot
• Need interested parties to agree on risk criteria


