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Summary

Objectives and Methods

The objectives of this fixed-location hydroacoustic study were to (a) estimate
fish-passage rates through three major routes (spill bays, turbines, and the sluice
openings), (b) calculate a variety of fish-passage metrics for comparing 30- and
64-percent spill treatments, (c) describe horizontal, vertical, and diel distributions
of passage, and (d) evaluate assumptions in the acoustic screen model by explor-
ing detectability modeling and adjustment of counts among locations. The study
design included six blocks with two treatments each (30- and 64-percent spills
along with concomitant powerhouse operations) for spring and summer. Each
block was 6 days long with each treatment in place for three consecutive days. We
sampled 22 turbine intake slots (1 randomly selected slot of 3 per unit), 2 fish-unit
slots (1 randomly selected slot of 2 per unit), 13 spill bays (with 17 transducers),
and 4 sluiceway openings. The location of transducers in every intake and spill
bay was randomly selected from three possible locations except in two spill bays,
each of which was sampled by three transducers to evaluate the lateral distribution
of passage within bays. All acquired data from turbines and spill bays were
processed, i.e., no subsampling was employed, and 40 percent of all data acquired
from sluiceway sampling were subsampled and processed. Turbine and spillway
data were processed by automated tracking software. Three people then
reprocessed about 10 percent of these data for quality control and assurance.

The assumption of equal detectability among sampled passage routes is a
cornerstone of hydroacoustic estimation of fish passage metrics, and detectability
must be carefully modeled to develop accurate spatial expansion factors and to
assure the validity of the equal detectability assumption. We explored methods of
improving calculations of detectability to increase the accuracy of the expansion
factors used in the data processing. Split-beam transducers were used in tandem
with single-beam transducers to determine effective beam angles for all of the
transducers. Our approach to modeling detectability incorporated both range and
target-strength effects in spatial expansions. In this study, effective beam angles
were from 0.5 deg (single beam in turbine) to 2.5 deg (single-beam spillway)' less
than would be predicted from modeling effects of range alone or from a —3 dB
nominal beam angle. Flow data for TDA spillway revealed that modeling
hydroacoustic detectability was much more complicated than was previously

! A table for converting non-SI units of measurement to SI units is presented on page xviii.



thought. These results indicate how important accurate target strength and flow
data are for modeling detectability.

In our effort to provide the most unbiased and defensible estimates of fish
passage possible, we have identified inter-tracker variation as an important poten-
tial source of error. If not properly controlled, individual differences could provide
a source of systematic bias that could compromise the reliability of analyses based
upon hydroacoustic data. We can find no established method for the quantitative
evaluation of differences between and among trackers, either human or computer,
and we find no established standards for evaluation and control. We tested a
number of measures to test inter-tracker precision. All of the measures indicate
that precision was highest for the relatively acoustically clean turbine data and
decreased for the noisier sluiceway and spillway data.

We found that when tracking data with potential for significant amounts of
tracker bias, like data from the spillways or the sluiceway at TDA, consideration
must be given to distributing data files among trackers. Potential for bias
increased with the duration of tracking because bias was additive.

Our efforts to continue development of a reliable autotracker met with some
success. An autotracker is not affected by factors that may result in intra-tracker
variations with human trackers (e.g., fatigue). On average, the autotracker tracked
only 6 percent more fish than did manual trackers at the spillway. On relatively
cleaner in-turbine echograms, the autotracker found 15 percent more fish than did
manual trackers. We were unable to develop an autotracker that was reliable on
sluiceway data. An autotracker requires careful, routine calibration against trained
manual trackers to assure that it is performing properly. Because the noise condi-
tions that affect tracker performance vary temporally and spatially, the calibration
for one time or location cannot assure adequate performance for other times and
locations. Therefore, our calibration regressions of manual tracker counts on
autotracker counts were based upon many transducer locations within the power-
house and spillway and > 100 hr from a variety of days in spring and summer. We
used regression lines to convert autotracker counts into human tracker counts.
This provided a quality control check on the autotracker and a way of standard-
izing counts by the autotracker (spillway and turbines) with counts by people for
the sluiceway.

Results

All p-values in this section are from Wilcoxon Signed Ranks Tests performed
on metrics computed for six blocks (n = 6 with 5 degrees of freedom, < = 0.5)
for each season. “Passage” refers to estimates of absolute numbers passed.
“Efficiency” refers to the proportion of fish that pass into a nonturbine route to the
sum of the fish that pass by both turbine and nonturbine routes. “Effectiveness”
refers to the proportion of fish bypassed to a nonturbine route at a structure rela-
tive to the amount of water bypassed by that same route. In the spring, project fish
passage efficiency (FPE) was estimated at 0.84 during a 64-percent spill and 0.76
during a 30-percent spill. At night, FPE was significantly higher (p = 0.028)
during a 64-percent spill (0.81) than during a 30-percent spill (0.70). Overall,
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spillway efficiency was estimated at 0.72 during a 64-percent spill and 0.61
during a 3-percent spill, but differences between spill treatments were only
significant at night (p = 0.028). However, numbers of fish spilled at night
(spillway passage) did not differ significantly between the two spill treatments,
day or night, and most of the difference in spill efficiency can be explained by
significantly higher fish passage through turbines during a 30-percent spill than
during a 64-percent spill at night. Overall total (day and night) sluiceway effi-
ciency relative to the entire project was estimated at 0.12 during a 64-percent spill
and 0.15 during a 30-percent spill. It was significantly higher during a 30-percent
spill (0.13) than during the 64-percent spill (0.08) at night (p = 0.028), but there
was no significant difference during the day. Significantly more fish passed the
sluiceways with the 30-percent spill regime (p = 0.046 for days, p = 0.028 for
nights).

Estimated FPE from summer sampling was 0.76 during a 64-percemt spill and
0.64 during a 30-percent spill. Project FPE was significantly higher (16 percent,
p = 0.028) during a 64-percent spill than during a 30-percent spill at night, but no
difference was detected during the day. Spillway efficiency was estimated at 0.66
during a 64-percent spill and 0.54 during a 30-percent spill. As in spring, spill
efficiency was significantly higher (16 percent, p = 0.028) during the 64-percent
treatment than during a 30-percent treatment at night, but differences were not
significant during the day. We observed significantly higher (p = 0.046) numbers
of fish spilled during the 64-percent treatment (mean number / hour = 3010.3)
than during the 30-percent treatment (mean number / hour = 2479.5) at night, but
we detected no significant differences during the day. Although sluiceway effi-
ciency relative to the entire project (0.09-0.10) did not differ among spill treat-
ments during night or day, significantly more fish were detected passing through
turbine intakes during a 30-percent spill than during a 64-percent spill at night
(p = 0.046). Turbine passage did not differ significantly by treatment during the
day, although the p-value (0.075) was relatively small with the 30-percent treat-
ment passing more, if not significantly more, fish.

We found high hourly rates of fish entrainment in the turbines at the upstream
end of the powerhouse during both spring and summer; especially during the
30-percent spill treatment when most turbines were operating. Out-migrating
smolts approaching TDA along the south shoreline may encounter attracting flow
nets from many turbine units before they become available to a relatively safe
surface passage route at the sluiceway or spillway. Low passage rates during the
spring at Main Unit 1 suggest that the sluiceway openings above Unit 1 may
effectively reduce entrainment into the intakes below the sluice openings. These
data suggest that an additional surface collection opening located at the upstream
end of the powerhouse may prove beneficial at reducing turbine entrainment.

The juvenile spill pattern was effective in redistributing total juvenile passage
toward the middle and Washington side of the spillway. While the density of fish
passage (i.e., fish per unit discharge) at the spillway was relatively uniform or
even slightly skewed toward the Oregon side, total passage usually predominated
at middle spill bays (3 or 4 through 13). The distribution of total passage was
clearly affected by the extent and duration of gate openings, whereas the distri-
bution of fish-passage density was independent of operations.



Vertical distribution data from turbines in spring indicated that fish were
slightly deeper during a 30-percent spill than during a 64-percent spill. In summer,
spill treatment differences were less obvious than day and night differences, when
fish were deeper at night than during the day.

Diel distribution data indicate that more fish passed the turbines at night than
during the day, whereas that pattern was reversed at the sluiceway. At the spill-
way, fish exhibited typical crepuscular peaks in passage soon after dark and in
early morning.
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Conversion Factors, Non-Sl to
S| Units of Measurement

Non-SI units of measurement used in this report can be converted to SI units

as follows:

Multiply By To Obtain
degrees 0.01745329 radians

feet 0.3048 meters

cubic feet/sec 0.0283 cubic meters/sec
statute mile (U.S.) 1,609.3470 meters




1 Introduction

Background

The U.S. Army Corps of Engineers (USACE) is committed to increasing
survival rates for fish passing its projects on the Columbia River and several
approaches for increasing survival are being evaluated at The Dalles Dam
(TDA). The USACE has evaluated effects of spill level on juvenile salmon
(Oncorhynchus spp.) survival and proportions of fish passing through the spill-
way, sluiceway, and turbines. Extended submersible bar screens (ESBS) have
been designed and tested. However, the decision to construct a full-scale juvenile
bypass system (JBS) has been delayed until the potential for developing a satis-
factory combination of spill and surface collection has been thoroughly explored.
Plans are being developed to use the sluiceway as the basis for surface collection
at TDA.

As part of a 1996 study, the USACE conducted an evaluation of 30- and
64-percent spill levels (BioSonics, Inc. 1996). However, high flows prevented the
Reservoir Control Center (RCC) from adhering to the spill schedule and many of
the days designated for a 30-percent spill were lost. Because of these problems
and the inherent variability in this type of data, the study was repeated in 1998
(BioSonics, Inc. 1998).

Although the RCC met each day's percent-spill target in 1998, fish passage
estimates at the spillway were suspect because they were consistently much higher
during the day than at night, particularly during the 30-percent spill treatments.
Many fish were observed milling through the upper portion of the down-looking
hydroacoustic beams during days with the 30-percent spill. Fish passage estimates
also were higher during the day than at night during the 64-percent spill
treatments. Radio telemetry data indicate that residence times of juvenile salmon
are higher during the day than at night. Hydroacoustic sampling bias may have
resulted from decreased detectability when spill was concentrated on the
Washington side of the spillway at night or from multiple counts of uncommitted
fish during the day, particularly at a 30-percent spill. We suspect that fish more
readily pass the spillway at night because of higher water velocity resulting from
the juvenile spill pattern and because darkness reduces the availability of visual
orientation and control cues. Spill gates on the Washington side of the spillway
are opened much more at night than during the day to keep juvenile salmon away
from the rocky shelf below spill gates on the Oregon side of the tailrace. In con-
trast, the horizontal distribution of spill is much more evenly spread across the
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spillway during the day, when more spill bays can be opened less and still
accommodate the same total spill volume as at night.

Hydroacoustic detectability among transducers at the spillway may not have
been equal, thereby invalidating day/night passage comparisons and confounding
spill-pattern evaluations. The Portland District did not use 30-percent-spill esti-
mates to calculate project fish-passage efficiency (FPE) or effectiveness because
of uncertainties about multiple counting and detectability. Project fish-passage
efficiency is the proportion of all fish that passed the project by nonturbine routes
(i.e., the sluiceway and spillway). Project-passage effectiveness is the ratio of FPE
to the proportion of total discharge that passed by nonturbine routes.

A major component of the 1999 research was to evaluate assumptions of the
acoustic screen model for estimating fish passage with fixed-aspect hydro-
acoustics. High priority was placed upon validation of assumptions in the acoustic
screen model, detectability modeling, and adjustment of counts to account for
differences in detectability among locations. Flow trajectories and velocities that
were not available to earlier investigators were incorporated into detectability
models and adjustments to hydroacoustic counts. Three split-beam transducers
were deployed in one spillbay, one turbine, and one sluiceway to evaluate fish
directions, target-strength distributions, and swimming speeds to facilitate
detectability modeling. These data also were used to estimate effective beam
angles (i.e., sample volume). Spillway mounts were redesigned to reduce the
probability of multiple counting of fish.

Objectives
The objectives of this study are as follows:

a. Task I: Make project- and route-specific estimates of fish passage, fish-
passage efficiency, and fish-passage effectiveness by spill treatment.

Spill pattern is presumed to have a large effect on the survival of fish in
the tail waters of hydroelectric projects, especially at TDA, and may have
an effect on fish passage and spill efficiency. This research evaluates fish
passage at two distinct spill levels to determine the effect of spill level on
fish passage and spill efficiency. The following list of specific objectives
was developed for the times of interest (i.e., day, night, spring, and
summer):

(1) Estimate fish passage, efficiency, and effectiveness and associated
95-percent confidence intervals for the sluiceway by spill treatment.

(2) Estimate the fish passage, efficiency, and effectiveness and asso-
ciated 95-percent confidence intervals for the spillway by spill
treatment.

(3) Estimate fish passage and associated 95-percent confidence intervals
for turbines by spill treatment.
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(4) Test for differences in sluiceway fish passage, efficiency, and effec-
tiveness between 30- and 64-percent spill treatments.

(5) Test for differences in spillway fish passage, efficiency, and effec-
tiveness between 30- and 64-percent spill treatments.

(6) Test for significant differences in turbine passage between the two
spill treatments.

(7) Test for significant differences in project fish-passage efficiency
between the two spill treatments.

(8) Present the horizontal distribution of fish passage, at the spillway
and powerhouse, by spill treatment.

(9) Present the vertical distribution of fish passage, for the sluiceway,
spillway, and powerhouse, by spill treatment.

(10) Present diel distributions of fish passage for the sluiceway, spillway,
and powerhouse by spill treatment.

(11) Compare run timing and abundance estimates with the John Day
Smolt Index.

Task 2: Evaluate assumptions for fixed-aspect acoustic monitoring.

We used split-beam hydroacoustics to assess whether single-beam-
monitoring techniques meet the assumptions of the acoustic screen model.
A split-beam transducer was installed in one spillbay, one sluiceway
opening, and one turbine intake in the same positions and with the same
aiming angles as all single-beam transducers. We produced the following
list of specific objectives to facilitate the testing of assumptions for fixed-
aspect acoustic monitoring.

(1) Describe the acoustic screen model and its underlying assumptions.

(2) Assess the assumptions and identify critical uncertainties requiring
monitoring and research.

(3) Apply data from this study and other studies to test uncertain
assumptions.

(4) Recommend specific ways to improve the acoustic screen model and
its application.

(5) Use flow velocity data to model hydroacoustic detectability at every
major passage route. Modeling was to be by 1-m strata if warranted
by the distribution of flow measurements along the acoustic axis of
the hydroacoustic beams.

(6) Use data from split-beam transducers to corroborate flow data
obtained from modeling and field measurements.



(7) Use the distribution of acoustic backscattering cross sections of fish
as determined from split-beam sampling to estimate the effective
beam angle of transducers.

(8) Determine the distribution of travel directions of tracked fish at the
sluiceway and consider the implications of applying corrections to
single-beam estimates.

Study Site

TDA, located at Columbia River mile 192, has a powerhouse that is parallel
to the main river channel, a spillway that is perpendicular to the river channel, and
a navigation lock on the Washington shore (Figure 1).

The spillway has 23 bays, numbered from the Washington shore. The power-
house has 22 main units (MU), numbered from downstream end. Each unit is
divided into three intakes, also numbered from the downstream end. Reference to
a specific intake is expressed as the turbine unit and intake number, e.g., 2-3 for
the east intake of MU 2 and 1-2 for the center intake of MU 1. Two fish units
(FU) are located just downstream of MU 1, and each unit has only two intakes
each. An ice and trash sluiceway extends the entire length of the powerhouse but
was only opened at MU 1 on the downstream end throughout most of spring and
summer. It was opened at MU 1 and 2 in late summer. There are skimmer gates
above each turbine intake of MU 1 that discharge up to 1,500 cfs into the sluice-
way. Maximum discharge of the ice and trash sluiceway when all gates are fully
open is 4,500 cfs.

Study Design

The study design included six blocks with two treatments (30- and 64-percent
spill) in spring, and six blocks of 